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Abstract In theWestern Antarctic Peninsula, increased biological activity at many levels of the food web
are spatially coherent with submarine canyons. One possible mechanism that links the presence of these
canyons to increased biological productivity is through the local upwelling of nutrient‐rich modified Upper
Circumpolar Deep Water (mUCDW) to the surface, which supports high phytoplankton stocks, krill,
penguins, and whales. In the austral summer of 2015, we investigated this hypothesis by deploying three
autonomous Slocum gliders over Palmer Deep Canyon, near Palmer Station, Antarctica. Although we
observed the shallowing of mUCDW consistent with canyon‐driven isopycnal uplift, these deep waters did
not penetrate the phytoplankton rich surface mixed layer. Waters below the mixed layer, however, were
strongly coherent with bathymetry, suggesting the strong influence of the canyon. The decoupling of the
surface mixed layer from the mUCDW suggests that local upwelling may not be the mechanism that
supports the biological hotspot. New physical mechanisms that could support the biological hotspot at
Palmer Deep Canyon are suggested.

Plain Language Summary It has been suggested that the association of deep submarine
canyons and the biological hotspot at Palmer Deep Canyon in the Western Antarctic Peninsula is due to
the local upwelling of deep, nutrient‐rich water to the surface, increasing phytoplankton growth and
thus attracting local krill and, in turn, supporting upper trophic levels. However, we found that during the
season of peak biological activity, summer stratification isolates the productive surface waters from the
nutrient‐rich water. Therefore, we suggest that upwelling of nutrient‐rich water is not the mechanism
driving this canyon associated biological hotspot. We suggest alternative mechanisms related to
horizontal transport.

1. Introduction

Submarine canyons that traverse the continental shelf and terminate within a few kilometers of the shore in
the Western Antarctic Peninsula (WAP) are often considered biological hotspots due to their association
with high biological activity (Carvalho et al., 2016; Fraser & Trivelpiece, 1996; Kavanaugh et al., 2015;
Schofield et al., 2013). Adélie, gentoo, and chinstrap penguin colonies, some of which have persisted across
millennial time scales (Emslie & Patterson, 2007), are often present at the terminus of these canyons. This
has become the foundational observation for the “canyon hypothesis,” which suggests that there is a
mechanistic relationship between these biological hotspots and the presence of these canyons (Fraser &
Trivelpiece, 1996; Schofield et al., 2013). One suggested mechanism linking the presence of these hotspots
to the canyons is the upwelling of nutrient‐rich Upper Circumpolar DeepWater (UCDW) that would, in the-
ory, support the growth of phytoplankton, Antarctic krill, and their upper level trophic predators (Prézelin
et al., 2000). Indeed, the source of nutrient‐rich waters along the WAP is likely the result of UCDW intru-
sions at the continental shelf break (Smith et al., 1999) that are transported across the continental shelf
via subsurface eddies and canyons (Couto, Martinson, et al., 2017). Prézelin et al. (2000) suggested that
the upwelling of UCDW at the shelf break could provide a dependable food source within penguins' 100‐
to 150‐km foraging range (Fraser & Trivelpiece, 1996; see inset of Figure 1 for region studied by Prézelin
et al., 2000). However, satellite telemetry of Adélie penguins in this region show that they rarely venture
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to these offshore upwelling sites but rather stay within approximately 20
km of their colony (Oliver et al., 2013; Pickett et al., 2018; Oliver et al.,
2019), even though the shelf break upwelling sites are within their known
foraging range (Fraser & Trivelpiece, 1996). It is certainly possible that
shoreward horizontal transport of production from the offshore upwelling
sites could benefit upper trophic level species in their nearshore foraging
habitats. However, the observation that Adélie penguin foraging is
restricted to the canyons near their colonies has led ecologists and oceano-
graphers to clarify and reduce the length scales of the potential mechan-
isms driving the observed hotspots.

Palmer Deep Canyon (PDC) biological hotspot, located off the southern
shore of Anvers Island in the WAP, is believed to be related to the local
shoaling of warm, nutrient‐rich UCDW (Schofield et al., 2013) at the near-
shore canyon terminus. A multiyear analysis of satellite chlorophyll, tem-
perature, and sea ice over PDC showed higher chlorophyll concentrations
over the canyon compared to nearby coastal regions (Kavanaugh et al.,
2015). Importantly, the distance between canyon and noncanyon sites in
this analysis was ~10 km, which is on the same scale as the penguin fora-
ging range in PDC. A localized UCDWupwelling signal within PDC could
explain the consistently higher satellite‐derived chlorophyll concentra-
tions, consistently lower sea ice cover, and restricted foraging range of
Adélie penguins in January and February (Kavanaugh et al., 2015).
These observations provide strong circumstantial evidence that local
upwelling is the mechanism that spurs increased biological activity in
PDC during the middle to late summer months.

This localized view of the upwellingmechanism that supports this hotspot
has several key assumptions. The first is that nutrient‐rich UCDW pene-
trates the lighted surface layer where it can be utilized by phytoplankton.

The second is that the lighted surface layer is nutrient‐limited, and the upwelling of nutrient‐rich UCDW to
this layer supplies the necessary nutrients for phytoplankton growth. The third is that the residence time of
this surface layer is long enough for phytoplankton biomass to respond to these upwelled nutrients and
accumulate through growth. The fourth is that the increased phytoplankton biomass attracts krill, which
in‐turn support upper trophic predators such as penguins. While local upwelling has been suggested as
the mechanism that supports PDC biological hotspot, there have been few direct observations of upwelling.
For example, using a single buoyancy‐driven Slocum glider, Schofield et al. (2013) reported that nutrient‐
rich UCDWwas shoaling within PDC. However, it was unclear if the event promoted biological productivity
within the canyon system or if the event was persistent enough to support the hypothesis that continuous
upwelling within PDC drives the biological hotspot.

Here we use three buoyancy‐driven Slocum gliders to test the canyon hypothesis and observe local upwelling
events of UCDWwithin PDC in January and February of 2015 during the seasonal peak of biological activity.
We hypothesize that these upwelling events are the mechanism driving the biological hotspot in PDC.
Gliders have become a standard platform for oceanographic research; however, their relatively slow transit
speeds often make it difficult to discern if the changes observed along a transect are due to conditions chan-
ging in time or space. We attempted to address this issue by deploying two gliders in a cross pattern, with a
third glider holding station at their intersection. We used the differences in these transects to discern which
mechanisms likely drive differences throughout the canyon above and below the mixed layer.

2. Methods
2.1. Glider Data Collection

Three Slocum electric gliders were used to collect the physical and biological data used to describe the ocea-
nography of PDC. One glider ran a transect across PDC, parallel to the coast of Anvers Island; another ran a
transect along PDC, perpendicular to the coast of Anvers Island; and the third glider held station at the

Figure 1. Bathymetry map of Palmer Deep Canyon with the tracks of three
Slocum gliders used in this analysis. The inset illustrates the Western
Antarctic Peninsula, with the red dot representing the location of Palmer
Deep Canyon and the blue box illustrating the study region where Prézelin
et al. (2000) described outer‐shelf upwelling in the Western Antarctic
Peninsula. Bathymetry is from Global Multiresolution Topography (Ryan
et al., 2009). The light blue square represents Station 600‐040 within the
Palmer Long Term Ecological Research sampling grid. The coral line
represents the 99.5% contour for Adélie penguin foraging locations for
penguins tagged between 2002 and 2011. Black triangles represent the two
weather stations where wind data were collected.
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intersection of the other two glider transects (Figure 1) near the head of the canyon. Two of these gliders
(station‐keeping and across‐canyon) sampled the upper 100 m of the water column, while the third
(along‐canyon) sampled the upper 200 m.

All three gliders were deployed on 5 January 2015. The station‐keeping and across‐canyon vehicles were
recovered and redeployed after battery replacement during the month of January. Since the decorrelation
analysis (section 2.3) assumes a continuous time series, the glider missions were separated into two
sequential field experiments when all three gliders were on their assigned lines (Figure 1). The station‐
keeping glider completed 1,249 profiles during the first experiment and 1,684 profiles during the second
experiment. The along‐canyon glider completed 608 and 807 profiles during the first and second experi-
ments, respectively. The across‐canyon glider completed 791 profiles during the first experiment and
1,148 profiles during the second experiment. We treated these experiments independently for all analyses
described below.

The sampling methods and configurations of the three gliders are described in Kohut et al. (2014). In brief,
each glider was equipped with a SeaBird conductivity, temperature, and depth (CTD) and Wet Labs Eco
Triplet fluorometer that sampled approximately every 0.5 m. The Wet Labs Eco Triplet was configured to
measure backscatter in addition to chlorophyll a concentration. Only data from the downcasts were used
because science sensors were sometimes turned off on upcasts to save power. Data from these gliders were
cross‐calibrated using data from when they were in close proximity at the station‐keeping location
(supporting information Text S1, equations S1–S4, and Figure S1). These relationships were used to correct
the complete data set.

The gliders estimated depth‐integrated water currents between surface events by comparing surface GPS
locations with dead‐reckoning subsurface navigation (Schofield et al., 2007). Mixed layer depth (MLD)
was derived using the methods of Carvalho et al. (2016), which is based on the depth of the maximum buoy-
ancy frequency (Carvalho et al., 2017). Wind and bathymetry data were also matched to glider data. Wind
was measured at the Joubin and Wauwermans Islands weather stations, and bathymetry data are from
ETOPO1. The bathymetry was matched to glider data at its native resolution.

2.2. Water Mass Identification

Water masses observed during these experiments were identified using the temperature and salinity defi-
nitions from Carvalho et al. (2016) after analyzing six field seasons (2010–2015) with 26,455 upper water
column profiles. Carvalho et al. (2016) defined modified UCDW (mUCDW) as water with temperatures
between 0 and 1 °C and a salinity range between 34.1 and 34.7. Winter Water (WW) was defined as
water with a temperature equal to or less than −1.2 °C and salinities between 33.85 and 34.13.
Surface waters, also known as Antarctic (summer) Surface Water (AASW), were defined as waters hav-
ing temperatures between 0 and 4 °C and salinities between 32.5 and 33.5 (Carvalho et al., 2016; Smith
et al., 1999).

2.3. Decorrelation Analysis

Depth‐resolved glider data were separated into 10‐m depth bins across the three gliders and two experi-
ments. To examine the differences between the mixed layer and deeper water masses such as mUCDW,
we focused on the 0‐ to 10‐m and 80‐ to 90‐m bins. The 0‐ to 10‐m bin was used because it was consistently
within the mixed layer throughout both experiments. The 80‐ to 90‐m bin was chosen because it was well
below the mixed layer.

Within each depth bin, the data were linearly interpolated to hourly time stamps using the function approx
in the zoo package in R (R Core Team, 2017). These data were used to perform a decorrelation analysis for
each glider and depth bin. Decorrelations were detrended using the acf function in the stats package in R.
The mean was removed from each time series, and the maximum lag was set to 80 hr to encompass the time
it took for the across‐ and along‐canyon gliders to complete two transects. Daily trends were not removed
from surface data to avoid removing episodic surface events. Equation (1) calculates the 95% confidence
intervals for complete decorrelation.
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95%CI ¼ ±
1:95
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

length of time series
p (1)

Decorrelation analysis assumes that the data are Eulerian, meaning that data are collected at the same loca-
tion throughout the time series. Therefore, we attributed differences between the station‐keeping and along‐
and across‐glider correlations to spatial differences along the transects in PDC, both at the surface and
at depth.

2.4. Historical LTER data

Historic data from the Palmer Long Term Ecological Research (LTER) program were accessed from the
Palmer LTER website (https://oceaninformatics.ucsd.edu/datazoo/catalogs/pallter/datasets). We used
CTD (Iannuzzi, 2018), nutrient, and light irradiance data (Ducklow et al., 2019) from the annual Palmer
LTER cruises between 1993 and 2018 during the summer months (December–February). Station 600‐040
within the sampling grid is over PDC and Station 600‐080 is located 40 km to the northwest, outside of
PDC (Figures 1 and S2). Sampling frequency varied between the stations. At Station 600‐040, CTD data were
collected every year between 1993 and 2017, and nutrient profiles were collected every year from 1993 to
2018. Light percent irradiance was collected at Station 600‐040 in 1998–2000, 2002–2003, and 2005–2008.
At Station 600‐080, CTD casts were conducted between 1993 and 2008 and in 2014. Nutrient profiles were
conducted in 1995–1996, 1999, and 2000–2008.

CTD and nutrient data were averaged across sampling years. CTD data were binned in 10‐m depth bins.
Nutrient data were binned in 10‐m depth bins above 50‐ and 50‐m bins at deeper depths to account for lower
vertical resolution in the data. Percent light irradiance was averaged by year and in 5‐m depth bins for the 9
years between 1998 and 2008 (1998–2000, 2002–2003, and 2005–2008) where irradiance data were available
to estimate the depth of the euphotic zone (1% light level).

3. Results
3.1. Glider Observations of PDC

In the austral summer of 2015, PDC was stratified with a warm, relatively fresh surface layer that deepened
and became less fresh as the season progressed (Figures 2 and S3–S5). The MLD begins to deepen from a
mean of 13.5 m during the first experiment to a mean of 32 m during the second experiment in all transects
on 23 January, which is coincident with a large wind event, reaching an hourly maximum of 15 m/s with a
mean speed of 7 m/s on that day. The deepening of the MLD around 5 February to a mean of 44 m between 5
and 7 February was also coincident with high, sustained hourly winds on 5 February, with mean wind
speeds of 11 m/s (Figure 2a). This resulted in an increase in the surface layer density between the first
and second experiments (Figure S4).

A cool water mass was observed below the MLD. This water mass had a mean temperature of approximately
0 °C and mean salinity of approximately 33.5 (Figures 2, S3, and S5), which was likely remnant WW, carry-
ing the thermal signature from the previous winter, but distinct from the surface layer due to seasonal warm-
ing (Carvalho et al., 2016). As the MLD deepened further into the summer, the thickness of the WW
decreased from ~25 to ~12 m (Figures 2, S3, and S4). The thickness of the WW was greater in the station‐
keeping and across‐canyon observations than in the along‐canyon observations (Figures 2, S3, and S4), espe-
cially in the second experiment when the MLD deepened (Figures 2, S3, and S4).

A distinct water mass was observed below the WW (Figures 2 and S3–S5). This water mass had a tempera-
ture range between 0.5 °C at the upper edge and 1.25 °C at 200 m (Figures 2 and S5). The salinity of this layer
ranged between 34.25 at the upper edge and 34.5 below 100 m (Figures S3 and S5). Based on our definitions,
this water mass was mUCDW, which is a modified form of the UCDW water that has been hypothesized to
be a source of upwelled nutrients for PDC (Kavanaugh et al., 2015).

The thickness of theWW layer was coherent with the bathymetry in the along‐canyon transect, especially as
the season progressed into February (Figures 2, S3, and S4). Thicker WW layers were found over shallower
ocean depths (<500 m), while mUCDW was closer to the surface over deeper waters (>800 m; Figures 2, 3,
S3, and S4). A thicker WW layer was found on the west side of the canyon, which is consistent with
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Figure 2. Wind speed across Palmer Deep Canyon (a) and temperature profiles collected by the station‐keeping (b), along‐
canyon (c), and across‐canyon (d) glider transects for both experimental periods. The bathymetry of Palmer Deep
Canyon along the glider track is denoted by the black line and corresponds to the right y axis. Mixed layer depth is
represented by the white dots and corresponds to the left y axis. The black bars along the x axis denote the two time periods
used for the two experiments. These times correspond to when all three gliders were deployed along their respective
transects.

Figure 3. Distribution of Antarctic Surface Water (green), Winter Water (blue), and modified Upper Circumpolar Deep
Water (red) water masses observed by the stationary (a), along‐canyon (b), and across‐canyon (c) glider transects during
both experimental periods. The bathymetry of Palmer Deep Canyon along the glider track is denoted by the black line and
corresponds to the right y axis. Mixed layer depth is represented by the gray dots and corresponds to the left y axis. The
black bars along the x axis denote the two time periods used for the two experiments in the analysis of each glider. These
times correspond to when all three gliders were deployed along their respective transects.
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observations made by Carvalho et al. (2016) using six seasons of glider data from PDC (Figures S6a, S6b, S7a,
and S7b). WW is a persistent feature during the summer months within PDC. WWwas found in 87.5% of the
93 CTD profiles taken from Station 600‐040 within the LTER sampling grid during the summer months from
1991 to 2017.WW in these profiles was found between 36 and 51m deep on average. mUCDWwas present in
93.8% of these CTD profiles, between 86 and 704 m on average. This pattern of WW and mUCDW distribu-
tion is evident in the transect‐averaged properties in both experiments (Figures S6–S9). Therefore, we
believe that 2015 was a representative year within PDC in terms of water mass structure.

Figure 4. As in Figure 2 but with optical backscatter at 700 nm.

Figure 5. Average observations of optical backscatter from the along‐ (a,c) and across‐canyon (b,d) transects during the
first (a,b) and second (c,d) experiments. Observations were averaged on 0.5‐km resolution. The black line denotes the
average canyon depth experienced by the glider and corresponds to the right y axis in each panel.
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Water mass vertical distributions across the two experiments showed that the depth of the AASW and thick-
ness of the WWwere strongly related to the MLD. As the season progressed, WW slowly eroded. During the
first experiment, mUCDW stayed far below the mixed layer, with no obvious intrusions into the surface, as
the WW formed a barrier between the mUCDW and AASW (Figure 3). This was true even during a strong
wind event on 5–6 February in the second experiment (Figures 3a and 3b). However, in the second experi-
ment, mUCDW became deeper in shallower portions of the canyon and shallower in deeper portions in
the canyon (Figure 3b), coming closer to themixed layer as the season progressed. This observation is consis-
tent with the physical upwelling and doming of isopycnals in submarine canyons (Klinck, 1989; Mackas
et al., 1997). This doming was more pronounced later in the season. There is also a strong across‐canyon
asymmetry of mUCDW (Figure 3c), which was also seen in the averaged across‐canyon transects
(Figures S6 and S7). Average temperature and salinity transects across the canyon indicated mUCDW was
shallower on the east side of the canyon in both experiments (Figures S6a, S6b, S7a, and S7b).

Water spiciness (McDougall & Krzysik, 2015; Schmitt, 1999) was calculated as a proxy for potential cross iso-
pycnal mixing (Figure S10). In short, higher water spice indicates warmer, saltier water, while decreased
spice indicates colder, fresher water masses. The stratification, similar to that seen in the temperature, sali-
nity, and density time series (Figures 2, S3, and S4), apparent in the time series of water spiciness indicates
that there was minimal cross isopycnal mixing, with the exception of the wind driven mixing events
described above (Figure S10).

Figure 6. Integrated current velocity and direction in 1‐km bins for each of the three glider transects during the first (a)
and second (b) experiments. Thin black lines illustrate Palmer Deep Canyon bathymetry from Global Multiresolution
Topography (Ryan et al., 2009).

Table 1
Decorrelation Time Scales of Temperature, Salinity, Chlorophyll, Backscatter, Current Velocity, MLD, and Wind Speed in
Hours Observed in All Three Glider Transects at Shallow (0–10 m) and Deep (80–90 m) Depths During Both Experiments

Variable

Decorrelation time scales (hr)

Station‐keeping Along‐canyon Across‐canyon

0–10 m 80–90 m 0–10 m 80–90 m 0–10 m 80–90 m

Temperature 25 (50) 15 (40) 40 (15) 12.5 (15) 25 (10) 8 (10)
Salinity 15 (7.5) 15 (40) 10 (15) 10 (15) 10 (10) 8 (10)
Chlorophyll 5 (10) 10 (18) 5 (10) 15 (15) 5 (10) 2.5 (5)
Backscatter 7.5 (2.5) 10 (18) 5 (2) 15 (15) 2.5 (1) 5 (10)
Current velocity 5 (5) 5 (5) 5 (5)
MLD 5 (20) 5 (15) 10 (5)
Wind speed 10 (10) 10 (15) 10 (10)

Note. Decorrelations from the second experiment are in parentheses. Current velocity, MLD, and wind speed were not
grouped by depth bin. MLD = mixed layer depth.
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High chlorophyll concentrations and backscatter were observed in the AASW, across all transects (Figures 4
and S11). These high chlorophyll and backscatter observations deepened as the MLD deepened (Figures 4
and S11). Chlorophyll in the surface layer followed a diurnal nonphotochemical quenching (NPQ) pattern
(Figure S11). Model II regressions of chlorophyll concentrations and backscatter above theMLDwere highly
correlated at night for all three gliders (Stationary, R2 = 0.91; Along Canyon, R2 = 0.89; Across Canyon, R2 =
0.81) indicating that backscatter is also a good indicator of chlorophyll biomass and that NPQ explains the
daily surface reductions in chlorophyll biomass.

Below the mixed layer, the along‐canyon and across‐canyon gliders showed elevated backscatter values in
the deeper and the eastern portions of the canyon, possibly reflecting either particle export or particle reten-
tion from surface waters (Figures 5a, 5b, and S6–S9). These patterns persisted, but particle concentrations
decreased in the second experiment (Figures 5c and 5d).

Glider‐estimated current velocities averaged for each experiment were integrated from the surface to the
maximum profiling depth and binned to every kilometer across each glider's respective transects
(Figure 6). The station‐keeping and across‐canyon gliders had higher depth‐integrated velocities than
the along‐canyon glider. This likely reflects the different glider dive depths and survey locations. The
station‐keeping and across‐canyon gliders profiled to ~100 m, while the along‐canyon glider profiled
to ~200 m.

The mean flow in the upper water column observed across both experiments is directed toward the head
of PDC. The average velocity for the station‐keeping glider was 10.78 and 10.96 cm/s for the first and
second experiments, respectively. If we take the dominant length scale (the length scale of important
physical processes in this system) of PDC to be ~22 km, these velocities suggest that it would take a sur-
face particle approximately 2.27 days to drift from the deepest portion of PDC to Anvers Island. This

Figure 7. Decorrelations of temperature, salinity, chlorophyll, backscatter, current velocity, mixed layer depth (MLD), and
wind speed from the station‐keeping glider. Solid lines represent decorrelations during the first experiment, and
translucent lines represent decorrelations during the second experiment. (a,b) Decorrelations in the surface layer between
0 and 10 m and (c,d) decorrelations in the deep layer between 80 and 90 m. (e) Current velocity, MLD, and wind speed did
not change with depth. Dashed lines represent the 95% confidence intervals for zero correlation.
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time scale is similar to the residence times (~2.1 days) of particles estimated by Kohut et al. (2018).
Using the same length scale, the along‐ and across‐canyon gliders have similar mean residence
times (Figure S12).

3.2. Decorrelation Analysis

Decorrelation analysis was used to separate time and space variabilities across the canyon. Decorrelation
time scales in the station‐keeping glider were used to represent variability in time, while differences between
the station‐keeping and the along‐ and across‐canyon gliders were used to represent spatial variability. If
mUCDW upwelling, or any influence of subsurface water masses on surface waters, was present, we expect
to see spatial variability in the surface layers over the canyon with similar periods to the underlying
canyon bathymetry.

The decorrelation time scales observed by all three gliders are presented in Table 1. In the sections below, we
highlight results and patterns that are relevant to our hypothesis.
3.2.1. Station‐Keeping Glider Decorrelation Analysis
In the surface layer, the station‐keeping glider observed decorrelation scales between 5 (backscatter) and
25 (temperature) hr during the first experiment (Figures 7a and 7b and Table 1). In the second experi-
ment, temperature decorrelated at 50 hr (Figure 7a and Table 1). This is likely due to more uniform
temperature in the surface layer in the second half of the season (Figure 2b). The only property that
recorrelated in this surface layer was chlorophyll at lags of 24, 50, and 72 hr (Figure 7b). Backscatter,
however, did not show these patterns (Figure 7b). Therefore, the decorrelation pattern in chlorophyll
is likely due to daily NPQ cycles and not changes in biomass. There were similar patterns in chlorophyll
and backscatter during the second experiment (Figure 7b).

At depth, decorrelation time scales ranged between 10 (temperature and salinity) and 15 (chlorophyll and
backscatter; Table 1). Again, temperature and salinity decorrelation time scales increased to 40 hr in the sec-
ond experiment, due to more uniform temperature and salinity properties at depth as the season progressed
(Figures 2c and S2b). Optical properties decorrelated at similar time scales in the second experiment.

Figure 8. As in Figure 7 except with the along‐canyon glider and bathymetry.
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Current velocities decorrelated and recorrelated at periodicities consistent with tidal periods in
PDC (Figure 7e).
3.2.2. Along‐ and Across‐Canyon Decorrelation Analyses
The along‐ and across‐canyon glider time series include signals from PDC changing in time and in space.
Therefore, we included the decorrelation of bathymetry, which only changes in space along the glider track
as a reference for the along‐ and across‐canyon decorrelation analyses (Figures 8 and 9). The bathymetry for
the along‐canyon glider has maximum anticorrelation at 28 hr and maximum recorrelation at 55 hr. This
corresponds to the average velocity of the along‐canyon glider of 0.496 km/hr and represents the time it takes
the along‐canyon glider to travel offshore (anticorrelate) and then return onshore (recorrelate).

In surface waters along PDC, decorrelation time scales ranged from 5 (chlorophyll and backscatter) to 40
(temperature) hr (Figures 8a and 8b and Table 1). Decorrelation time scales were similar in the second
experiment and temperature decorrelation time scales decreased to 15 hr (Figure 8a and Table 1).
Temperature in the second experiment also recorrelated around 50 hr, which was similar to the recorrelation
time scales of bathymetry. This is likely due to increased temperatures over shallower portions of the canyon
(Figure 2c). Chlorophyll recorrelated approximately every 24 hr, likely reflecting NPQ (Figure 8b). Across all
measured variables in the surface layer, with the exception of temperature recorrelation patterns in the sec-
ond experiment, there was little to no coherence between the decorrelation scales of the measured variables
and the decorrelation scale of the bathymetry (Figures 8a and 8b).

At depth, decorrelation time scales ranged from 10 to 15 hr across physical and optical properties (Table 1).
Temperature anticorrelated at 30 hr, and both temperature and salinity recorrelated at 50 hr (Figure 8c).
These correspond to the bathymetry decorrelations (Figure 8c). A similar pattern was observed in the chlor-
ophyll and backscatter concentrations, although it was more pronounced in backscatter than chlorophyll,
with backscatter anticorrelating at 32 hr and both backscatter and chlorophyll recorrelating at 55
hr (Figure 8d).

Since the along‐canyon transect was the only transect to be sampled continuously through both experi-
ments, we performed decorrelation analysis on the continuous time series (Figure S13). The decorrelation
scales for the continuous time series are similar to those in the two experiments, with the exception of

Figure 9. As in Figure 7 except with the across‐canyon glider and bathymetry.
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temperature and salinity above the mixed layer, and MLD (Figures S13a and S13e). We attribute these dif-
ferences to gradual seasonal changes that occur within the continuous time series on greater temporal scales
than the lag scales examined. Temperature, salinity, and backscatter below the mixed layer continued to cor-
respond with bathymetry correlations (Figures S13c and S13d).

The bathymetry of the across‐canyon glider transitioned from shallow, then to deep, and back to shallow as
it traversed the canyon from one flank to the other. Therefore, the first recorrelation at 20 hr in the across‐
canyon glider represents a single crossing, and the second recorrelation at 35 represents the return trip to the
original location, which corresponds to an average glider velocity of 0.604 km/hr.

In the surface, decorrelation time scales ranged between 2.5 (backscatter) and 25 (temperature) hr
(Figures 9a and 9b and Table 1). Salinity recorrelated at 28 hr and temperature anticorrelated at 57 hr
(Figure 9a). Chlorophyll recorrelated at 24 hr (Figure 9b). Similar patterns were observed in the second
experiment (Figures 9a and 9b). However, there was no obvious relationship between these decorrelations
and the bathymetry decorrelation scale (Figures 9a and 9b).

At depth, temperature, salinity, and backscatter showed similar decorrelation patterns, with these variables
decorrelating at 8 hr and exhibiting recorrelations at 35 and 68 hr and anticorrelations at 18 and 53 hr
(Figures 9c and 9d). The decorrelation patterns in bathymetry are approximately twice the frequency of
the decorrelation patterns in the temperature, salinity, and backscatter of deeper water masses. This suggests
that the changes in these properties are only associated with one side of PDC at depth. This pattern was also
reflected in the time series and average across‐canyon transects (Figures 2d, 3c, 4d, S6, and S7).
3.2.3. Comparison of Decorrelations
The decorrelation analysis of waters between 0–10 and 80–90 m shows that shallow water dynamics differ
from those observed in deeper waters (Figures 7–10). In the surface layer, salinity, chlorophyll, and backscat-
ter decorrelated rapidly on similar time scales (Figures 10a and 10d and Table 1) irrespective of glider move-
ments, indicating that the surface layer is not spatially structured as we would expect in a persistent
bathymetry‐related upwelling scenario (Figures 8a, 8b, 9a, and 9b). At depth, decorrelation time scales were
dissimilar across all three gliders (Figures 10e, 10f, and 10h). Recorrelations in the along‐ and across‐canyon
gliders were similar to the recorrelation patterns of canyon bathymetry (Figures 8, 9c, and 9d).

3.3. Historical Palmer LTER Nutrient and Light Profiles

Historical macronutrient profiles from the Palmer LTER indicate that nutrients within the surface mixed
layer are not limiting within PDC nor along the nearby continental shelf. In PDC, surface phosphate ranges
from approximately 1.5 to 1.75 μmol/L from the surface to 25 m, which was the depth of WW according to
our definitions in the mean temperature and salinity profiles (Figure S2a). Over these depths, silicate con-
centrations range between 60 and 72 μmol/L and nitrate concentrations range between 20 and 25 μmol/L
(Figure S2a). On the continental shelf, similar nutrient concentrations were observed (Figure S2b).
Phosphate concentrations were ~1.5 μmol/L, silicate concentrations ranged between ~57 and 80 μmol/L,
and nitrate concentrations were ~20 μmol/L between the surface and 25 m (Figure S2b). These nutrient con-
centrations are relatively stable in the WW and increase with depth in the mUCDW (Figure S2). While
nitrate and phosphorus are rarely limiting in theWAP (Smith et al., 1996), nitrate and phosphorus have been
shown to be limiting in nearshore regions at ~2 and below 0.02 μmol/L, respectively (Holm‐Hanson et al.,
1989). Silicate has been shown to be limiting below 5 μmol/L (Nelson et al., 2001). Light irradiance decreased
exponentially with depth (Figure S14). The 1% and 5% light level was on average 46.9 ± 17.1 and 24.8 ± 6.5
m, respectively (Figure S14).

4. Discussion

For localized upwelling of mUCDW to act as the mechanism maintaining the biological hotspot, it must
reach a lighted, nutrient‐limited surface layer and be retained long enough to affect phytoplankton abun-
dance through growth. Satellite observations of increased chlorophyll over PDC provide a strong circum-
stantial case for this view (Kavanaugh et al., 2015). However, we believe that our analysis suggests (1) that
upwelling of mUCDW into the surface layer is not the dominant physical signal, (2) that the surface layer
is neither macronutrient nor micronutrient limited, and (3) that the surface residence times are too short
for phytoplankton growth rates respond to any upwelling event.
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We observed no obvious entrainment of mUCDW into the mixed layer throughout PDC. The mUCDW was
separated from AASW by a layer of WW (Figure 3). Although we observed spatial differences in the depth of
mUCDW (Figures S5–S8), WW persisted as a boundary between the surface waters and mUCDW (Figure 3).
Furthermore, the three gliders showed similar decorrelation patterns in AASW despite spatial differences in
glider transects (Figures 10a–10d). These patterns were not similar to the decorrelation patterns in the can-
yon bathymetry, suggesting that there is no canyon effect within the surface mixed layer. This is contrary to
our hypothesis that surface decorrelation patterns would be similar to canyon bathymetry if canyon‐driven
upwelling was occurring within PDC (Figures 8–10).

Ship‐based observations from 1993 to 2018 in the Palmer LTER suggest that our observations are typical for
this system during the austral summer. WW was present in 87.5% of CTD casts at Station 600‐040 and was
between 36‐ and 51‐m depth during these casts, consistent with our observations (Figures 3 and S6–S9). In
addition, mUCDW was found in 93.8% of profiles below 86 m, which was similar to our observations
(Figures 3 and S6–S9) and consistent with six seasons of glider observations within the austral summer in
PDC (Carvalho et al., 2016). Nutrient profiles from this historical data set also suggest that this system is
not nutrient limited. Macronutrients nitrogen, phosphorous, and silica were abundant in the upper 20 m
of the water column within PDC and along the continental shelf (Figure S2).

While these nutrient profiles do not indicate upwelling, it is possible that nutrients are supplied to the sur-
face via diffusive fluxes from mUCDW. Recent studies along the WAP suggest diffusive fluxes play a vital
role to local nutrient dynamics (Bown et al., 2018; Henley et al., 2018; Pedulli et al., 2014), so this is a possible
mechanism for mUCDW to influence surface productivity. It is also possible that while the Palmer LTER
data set analyzed has high temporal resolution across years (i.e. 1993–2018), these observations are spatially
and seasonally limited since these sampling events only occur in January or early February each year.
Therefore, the Palmer LTER datamaymiss upwelling events that possibly occurred earlier or later in the sea-
son or at different locations within PDC. The data also could not resolve pulsed nutrient supplies, or short

Figure 10. Comparisons of the decorrelation scales of temperature (a,e), salinity (b,f), chlorophyll (c,g), and backscatter (d,h) decorrelations in the surface (0–10 m;
a–d) and deep layers (80–90 m; e–h) between the stationary, along‐canyon, and across‐canyon gliders. Solid lines represent decorrelations during the first experi-
ment, and translucent lines represent decorrelations during the second experiment. Dashed lines represent the 95% confidence intervals of zero correlation.
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periods of nutrient limitation (Henley et al., 2017; Henley et al., 2018; Kim et al., 2016), that could have a
significant impact on regional productivity.

Recent observations show that iron, a critical micronutrient, is not primarily sourced from mUCDW upwel-
ling but from nearby glacial and sediment runoff (Sherrell et al., 2018). Therefore, if mUCDW was upwel-
ling, it would likely not have an effect on phytoplankton growth. This agrees with field incubation
experiments (Carvalho et al., 2019). Furthermore, light irradiance data show that the 1% light level (depth
of the euphotic zone) in PDC is on average 47 m during the summer months (Figure S14). mUCDW is not
found at these depths until stratification begins to break down late in the growing season.

Beyond the lack of an upwelling signal and nutrient limitation, it is likely that surface water residence time
over PDC is too short to attribute high phytoplankton biomass to local growth driven by localized upwelling.
The residence time of surface waters based on simulated drifters (Kohut et al., 2018) and integrated glider
currents (Figure 6 and S12) is ~2.2 days, while the doubling time of phytoplankton in this region is on the
order of ~7 to ~70 days (Moline, 1996). Growth rate estimates based on chlorophyll concentrations measured
annually in Ryder Bay, south of PDC, since 1998 suggests the doubling time is ~100 days, assuming exponen-
tial growth (Venables et al., 2013). This suggests that if mUCDW is upwelling and was systematically missed
by glider observations, it would be quickly transported away. These low residence times could also explain
why the salinity, chlorophyll, and backscatter decorrelation patterns in the surface between the three gliders
are similar despite the difference in the glider locations relative to each other (Figures 10a–10d).

If local upwelling is not the mechanism maintaining the biological hotspot, then there must be another
mechanism driving this phenomenon. Below, we attempt to reconcile satellite observations of enhanced
phytoplankton biomass from Kavanaugh et al. (2015) over PDC (section 4.1) and then propose testable alter-
native hypotheses to account for the hotspot phenomenon in PDC (section 4.2).

4.1. Reconciling Satellite Observations

Satellite observations of lower ice and higher chlorophyll concentrations over PDC provided strong circum-
stantial evidence for local upwelling and retention of warmmUCDW (Kavanaugh et al., 2015). However, the
lack of a clear upwelling signal of mUCDW (Figure 3) calls this interpretation into question. It is possible
there is episodic upwelling over the canyon where the gliders did not sample. For example, mUCDW could
be upwelling over portions of the eastern flank of PDC that were not sampled by the across‐canyon glider
where mUCDWwas high in the water column and were therefore missed here. Whether or not local upwel-
ling is ecologically relevant depends both on surface residence times that are longer than the phytoplankton
growth rate and that the phytoplankton are nutrient limited. Neither of these appear to be true. In addition,
mUCDW does not transfer heat to the surface mixed layer as proposed by Kavanaugh et al. (2015), due to
WW acting as a barrier to heat transfer to the surface (Figure 3).

Rather than upwelling of warm mUCDW melting sea ice, the lack of sea ice observed by Kavanaugh et al.
(2015) over PDC could be attributed to strong surface currents or local winds. Notably, Kavanaugh et al.
(2015) did not observe a temperature difference between canyon and noncanyon sites in PDC, suggesting
that there could be other mechanisms creating low‐ice conditions. Other coastal canyons along the WAP
have also been associated with ice‐free regions (Schofield et al., 2013) that are coupled with significant
increases in productivity due to increased irradiance (Smith & Gordon, 1997), suggesting that these systems
are light limited rather than nutrient limited. It is important to note that observations in PDCmay not apply
to the other canyon systems examined by Kavanaugh et al. (2015) because the Bismark Strait provides a con-
duit for flow away from the canyon (Figure 1).

4.2. Horizontal Transport as a Potential Hotspot Supporting Mechanism

The short surface residence time in PDC (this study; Kohut et al., 2018) strongly suggest that enhanced phy-
toplankton and krill biomass is a result of the advection of high concentrations of phytoplankton and krill
biomass from the continental shelf into PDC, rather than local production of biomass supported by local
upwelling, as suggested by the canyon hypothesis. However, it is unknown what these transport mechan-
isms are or how they interact with PDC.

There is evidence of isopycnal doming over the deepest parts of the canyon (Figures 3b, S4c, and S15). If we
take these sloping isopycnals indicate doming within PDC, this doming may be associated with stretching of
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the water column as water moves over the canyon through conservation of potential vorticity, leading to the
uplift of the denser waters in the middle of the canyon (Klinck, 1989; Mackas et al., 1997). One possibility
that would explain isopycnal doming and the strong coherence between bathymetry, temperature, and sali-
nity (Figures 8c, 8d, 9c, 9d, and 10e–10h) below the mixed layer would be the presence of a subsurface recir-
culating eddy over the canyon (Allen & Hickey, 2010). Sloping isopycnals over the canyon generate a
geostrophically balanced pressure gradient leading to the formation of an eddy around the rim of the canyon
(Allen et al., 2001). Based on mean density profiles from Station 600‐040 and a maximum glider sampling
depth of 200 m, an internal radius of deformation below the mixed layer was estimated as ~7.5 km. Since
the moving gliders had transects approximately 20 km long both along and across PDC, it is possible that
we observed subsurface geostrophic flows. Although speculative, this may explain why the decorrelation
scales of deep backscatter are coherent with bathymetry in PDC (Figures 8 and 9). Analysis of modeled drif-
ters released within PDC suggests that residence time below the mixed layer (~50 m) is approximately 25
days (Couto, Kohut, et al., 2017), possibly allowing these waters to accumulate particles exported from the
surface layer.

While it is possible that a recirculating eddy within PDC is facilitating the accumulation of particles, the nat-
ure of these high backscatter returns is unknown. Since these particles were observed far from shore over the
deepest portions of the canyon, we propose that they are more likely to be biogenic than terrigenous. They do
not exhibit correlations to chlorophyll fluorescence nor do they perform diurnal vertical migration
(Goodrich, 2018; Figure S16). Therefore, it is possible that these particles may be aggregates of organic mate-
rial that are caught in a deep recirculation pattern over PDC. Whether or not this hypothesized recirculation
feature has any impact on larger zooplankton, and by extension, zooplankton predators is unknown. Krill
have high diurnal vertical directed swimming speeds and could vertically migrate out this retentive feature.
However, if krill horizontal movement is undirected and random, they could be retained by a coherent deep
recirculating flow during the day.

There are several key assumptions that need to be tested if a deep recirculation pattern could serve as a
mechanistic explanation for the canyon hypothesis: The (1) particles have a higher residence time at depth
compared to the surface; (2) krill, like these particles, are retained in the deep portions of the canyon; and (3)
vertically migrate to the surface layers where they are (4) accessible by predators via horizontal transport in
the surface layer.

References
Allen, S. E., & Hickey, B. M. (2010). Dynamics of advection‐driven upwelling over a shelf break submarine canyon. Journal of Geophysical

Research, 115, C05008. https://doi.org/10.1029/2009JC005731
Allen, S. E., Vindeirinho, C., Thomson, R. E., Foreman, M. G. G., & Mackas, D. L. (2001). Physical and biological processes over a sub-

marine canyon during an upwelling event. Canadian Journal of Fisheries and Aquatic Sciences, 58(4), 671–684. https://doi.org/10.1139/
cjfas‐58‐4‐671

Bown, J., van Haren, H., Meredith, M. P., Venables, H. J., Laan, P., Brearley, J. A., & de Baar, H. J. (2018). Evidences of strong sources of
DFe and DMn in Ryder Bay, Western Antarctic Peninsula. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 376, 2122. https://doi.org/10.1098/rsta.2017.0172

Carvalho, F., Fitzsimmons, J., Couto, N., Waite, N., Gorbunov, M., Kohut, J., et al. (2019), Testing the canyon hypothesis: Evaluating light
and nutrient controls of phytoplankton growth in penguin foraging hotspots along the West Antarctic Peninsula. Limnology and
Oceanography. https://doi.org/10.1002/LNO.11313

Carvalho, F., Kohut, J., Oliver, M. J., & Schofield, O. (2017). Defining the ecologically relevant mixed‐layer depth for Antarctica's coastal
seas. Geophysical Research Letters, 44, 338–345. https://doi.org/10.1002/2016GL071205

Carvalho, F., Kohut, J., Oliver, M. J., Sherrell, R. M., & Schofield, O. (2016). Mixing and phytoplankton dynamics in a submarine canyon in
the West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 121, 5069–5083. https://doi.org/10.1002/2016JC011650

Couto, N., Kohut, J., Schofield, O., Dinniman, M. & Graham, J. (2017). Pathways and retention times in a biologically productive canyon
system on the West Antarctic Peninsula. In OCEANS–Anchorage, 2017, 1‐8. IEEE.

Couto, N., Martinson, D. G., Kohut, J., & Schofield, O. (2017). Distribution of Upper Circumpolar Deep Water on the warming
continental shelf of the West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 122, 5306–5315. https://doi.org/10.1002/
2017JC012840

DucklowH., Vernet M., & Prezelin B. (2019). Dissolved inorganic nutrients including 5macro nutrients: Silicate, phosphate, nitrate, nitrite,
and ammonium from water column bottle samples collected during annual cruise along western Antarctic Peninsula, 1991–2018.
Environmental Data Initiative. https://doi.org/10.6073/pasta/29e7035681f2496a78f097fd2fcb6ce0

Emslie, S. D., & Patterson, W. P. (2007). Abrupt recent shift in δ13C and δ15N values in Adélie penguin eggshell in Antarctica. PNAS,
104(28), 11,666–11,669. https://doi.org/10.1073/pnas.0608477104

Fraser, W. R., & Trivelpiece, W. Z. (1996). Factors controlling the distribution of seabirds: Winter‐summer heterogeneity in the distribution
of Adelie penguin populations. Antarctic Research Series, 70, 257–272. https://doi.org/10.1029/AR070p0257

Goodrich, C. S. (2018). Sustained glider observations of acoustic scattering suggest zooplankton patches are driven by vertical migration
and surface advective features in Palmer Canyon, Antarctica. Master's Thesis, University of Delaware.

10.1029/2019JC015195Journal of Geophysical Research: Oceans

HUDSON ET AL. 14

Acknowledgments
This project was funded through the
National Science Foundation, Award
ANT‐1327248, with additional support
provided by Award OPP‐1440435 to W.
R. F. We are grateful to the Antarctic
Support Contractor and their teams,
both in Denver, CO, aboard the ARSV
Laurence M. Gould, and at Palmer
Station, without whom a project such as
ours would be impossible. We also
thank the students and field assistants
for their valued involvement in the
CONVERGE project. Finally, we thank
the Palmer Antarctica Long‐Term
Ecological Research team, for their
advice, suggestions, and collaboration.
Glider data can be accessed at ERDDAP
server (https://data.ioos.us/gliders/erd-
dap/info/index.html). LTER data can
be accessed online (https://oceaninfor-
matics.ucsd.edu/datazoo/catalogs/pall-
ter/datasets). Wind data can be
accessed online (http://accession.nodc.
noaa.gov/0187193).

https://doi.org/10.1029/2009JC005731
https://doi.org/10.1139/cjfas-58-4-671
https://doi.org/10.1139/cjfas-58-4-671
https://doi.org/10.1098/rsta.2017.0172
https://doi.org/10.1002/LNO.11313
https://doi.org/10.1002/2016GL071205
https://doi.org/10.1002/2016JC011650
https://doi.org/10.1002/2017JC012840
https://doi.org/10.1002/2017JC012840
https://doi.org/10.6073/pasta/29e7035681f2496a78f097fd2fcb6ce0
https://doi.org/10.1073/pnas.0608477104
https://doi.org/10.1029/AR070p0257
https://data.ioos.us/gliders/erddap/info/index.html
https://data.ioos.us/gliders/erddap/info/index.html
https://oceaninformatics.ucsd.edu/datazoo/catalogs/pallter/datasets
https://oceaninformatics.ucsd.edu/datazoo/catalogs/pallter/datasets
https://oceaninformatics.ucsd.edu/datazoo/catalogs/pallter/datasets
http://accession.nodc.noaa.gov/0187193
http://accession.nodc.noaa.gov/0187193


Henley, S. F., Jones, E. J., Venables, H. J., Meredith, M. P., Firing, Y. L., Dittrich, R., et al. (2018). Macronutrient and carbon supply, uptake
and cycling across the Antarctic Peninsula shelf during summer. Philosophical Transactions of the Royal Society a‐Mathematical Physical
and Engineering Sciences, 376(2122), 20170168. https://doi.org/10.1098/rsta.2017.0168

Henley, S. F., Tuerena, R. E., Annett, A. L., Fallick, A. E., Meredith, M. P., Venables, H. J., et al. (2017). Macronutrient supply, uptake and
recycling in the coastal ocean of the west Antarctic Peninsula. Deep‐Sea Research Part II‐Topical Studies in Oceanography, 139, 58–76.
https://doi.org/10.1016/j.dsr2.2016.10.003

Holm‐Hanson, O., Mitchell, B. G., Hewes, C. D., & Karl, D. M. (1989). Phytoplankton blooms in the vicinity of palmer station, Antarctica.
Polar Biology, 10(1), 49–57. https://doi.org/10.1007/BF00238290

Iannuzzi, R. (2018). Conductivity Temperature Depth (CTD) sensor profile data binned by depth from PAL LTER annual cruises, 1991–
2017 (ongoing). Environmental Data Initiative. https://doi.org/10.6073/pasta/12276fbc0d68568177702aed0d4b44bc

Kavanaugh, M. T., Abdala, F. N., Ducklow, H., Glover, D., Fraser, W., Martinson, D., et al. (2015). Effect of continental shelf canyons on
phytoplankton biomass and community composition along the western Antarctic Peninsula.Marine Ecology Progress Series, 524, 11–26.
https://doi.org/10.3354/meps11189

Kim, H., Doney, S. C., Iannuzzi, R. A., Meredith, M. P., Martinson, D. G., & Ducklow, H. W. (2016). Climate forcing for dynamics of dis-
solved inorganic nutrients at Palmer Station, Antarctica: An interdecadal (1993–2013) analysis. Journal of Geophysical Research:
Biogeosciences, 121, 2369–2389. https://doi.org/10.1002/2015JG003311

Klinck, J. M. (1989). Geostrophic adjustment over submarine canyons. Journal of Geophysical Research, 94(C5), 6133–6144. https://doi.org/
10.1029/JC094iC05p06133

Kohut, J., Bernard, K., Fraser, W., Oliver, M. J., Statscewich, H., Winsor, P., & Miles, T. (2014). Studying the impacts of local
oceanographic processes on Adélie penguin foraging ecology. Marine Technology Society Journal, 48(5), 25–34. https://doi.org/
10.4031/MTSJ.48.5.10

Kohut, J. T., Winsor, P., Statscewich, H., Oliver, M. J., Redj, E., Couto, N., et al. (2018). Variability in summer surface residence time within
a West Antarctic Peninsula biological hotspot. Philosophical Transactions of the Royal Society A, 376(2122), 20170165. https://doi.org/
10.1098/rsta.2017.0165

Mackas, D. L., Kieser, R., Saunders, M., Yelland, D. R., Brown, R. M., & Moore, D. F. (1997). Aggregation of euphausiids and Pacific hake
(Merluccius productus) along the outer continental shelf off Vancouver Island. Canadian Journal of Fisheries and Aquatic Sciences, 54(9),
2080–2096. https://doi.org/10.1139/f97‐113

McDougall, T. J., & Krzysik, O. A. (2015). Spiciness. Journal of Marine Research, 73(5), 141–152. https://doi.org/10.1357/
002224015816665589

Moline, M. A. (1996). Temporal dynamics and regulation of coastal Antarctic phytoplankton communities: Spring/summer 1991–1994.
Doctoral Dissertation, University of California, Santa Barbara.

Nelson, D. M., Brzezinski, M. A., Sigmon, D. E., & Franck, V. M. (2001). A seasonal progression of Si limitation in the Pacific sector of the
Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 48(19‐20), 3973–3995. https://doi.org/10.1016/S0967‐
0645(01)00076‐5

Oliver, M. J., Irwin, A., Moline, M. A., Fraser, W., Patterson, D., Schofield, O., & Kohut, J. (2013). Adélie penguin foraging location pre-
dicted by tidal regime switching. PLoS ONE, 8(1), e55163. https://doi.org/10.1371/journal.pone.0055163

Oliver, M. J., Kohut, J. T., Bernard, K., Fraser, W., Winsor, P., Statscewich, H., et al. (2019). Central place foragers select ocean surface
convergent features despite differing foraging strategies. Scientific Reports, 9, 157. https://doi.org/10.1038/s41598‐018‐35901‐7

Pedulli, M., Bisagni, J. J., Ducklow, H. W., Beardsley, R., & Pilskaln, C. (2014). Estimates of potential new production (PNP) for the
waters off the western Antarctic Peninsula (WAP) region. Continental Shelf Research, 84, 54–69. https://doi.org/10.1016/j.
csr.2014.05.011

Pickett, E. P., Fraser, W. R., Patterson‐Fraser, D. L., Cimino, M. A., Torres, L. G., & Friedlaender, A. S. (2018). Spatial niche partitioning
may promote coexistence of Pygoscelis penguins as climate‐induced sympatry occurs. Ecology and Evolution, 8(19), 9764–9778. https://
doi.org/10.1002/ece3.4445

Prézelin, B. B., Hofmann, E. E., Mengelt, C., & Klinck, J. M. (2000). The linkage between Upper Circumpolar Deep Water (UCDW) and
phytoplankton assemblages on the west Antarctic Peninsula continental shelf. Journal of Marine Research, 58(2), 165–202. https://doi.
org/10.1357/002224000321511133

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.

Ryan, W. B. F., Carbotte, S. M., Coplan, J., O'Hara, S., Melkonian, A., Arko, R., et al. (2009). Global Multi‐Resolution Topography (GMRT)
synthesis data set. Geochemistry, Geophysics, Geosystems, 10, Q03014. https://doi.org/10.1029/2008GC002332

Schmitt, R. W. (1999). Spice and the demon. Science, 283(5401), 498–499. https://doi.org/10.1126/science.283.5401.498
Schofield, O., Ducklow, H., Bernard, K., Doney, S., Patterson‐Fraser, D., Gorman, K., et al. (2013). Penguin biogeography along the West

Antarctic Peninsula: Testing the canyon hypothesis with Palmer LTER observations. Oceanography, 26(3), 204–206. https://doi.org/
10.5670/oceanog.2013.63

Schofield, O., Kohut, J., Aragon, D., Creed, L., Graver, J., Haldeman, C., et al. (2007). Slocum gliders: Robust and ready. Journal of Field
Robotics, 24(6), 473–485. https://doi.org/10.1002/rob.20200

Sherrell, R. M., Annett, A. L., Fitzsimmons, J. N., Roccanova, V. J., & Meredith, M. P. (2018). A ‘shallow bathtub ring’ of local sedimentary
iron input maintains the Palmer Canyon biological hotspot on the West Antarctic Peninsula shelf. Philosophical Transactions of the
Royal Society A, 376, 20170171. https://doi.org/10.1098/rsta.2017.0171

Smith, D. A., Hofmann, E. E., Klinck, J. M., & Lascara, C. M. (1999). Hydrography and circulation of the west Antarctic Peninsula conti-
nental shelf. Deep Sea Research Part I: Oceanographic Research Papers, 46(6), 925–949. https://doi.org/10.1016/S0967‐0637(98)00103‐4

Smith, W. O. Jr., & Gordon, L. I. (1997). Hyperproductivity of the Ross Sea (Antarctica) polynya during the austral spring. Geophysical
Research Letters, 24(3), 233–236. https://doi.org/10.1029/96GL03926

Smith, W. O. Jr., Nelson, D. M., DiTullio, G. R., & Leventer, A. R. (1996). Temporal and spatial patterns in the Ross Sea: Phytoplankton
biomass, elemental composition, productivity and growth rates. Journal of Geophysical Research, 101(C8), 18,455–18,465. https://doi.
org/10.1029/96JC01304

Venables, H. J., Clarke, A., & Meredith, M. P. (2013). Wintertime controls on summer stratification and productivity at the western
Antarctic Peninsula. Limnology and Oceanography, 58(3), 1035–1047. https://doi.org/10.4319/lo.2013.58.3.1035

10.1029/2019JC015195Journal of Geophysical Research: Oceans

HUDSON ET AL. 15

https://doi.org/10.1098/rsta.2017.0168
https://doi.org/10.1016/j.dsr2.2016.10.003
https://doi.org/10.1007/BF00238290
https://doi.org/10.6073/pasta/12276fbc0d68568177702aed0d4b44bc
https://doi.org/10.3354/meps11189
https://doi.org/10.1002/2015JG003311
https://doi.org/10.1029/JC094iC05p06133
https://doi.org/10.1029/JC094iC05p06133
https://doi.org/10.4031/MTSJ.48.5.10
https://doi.org/10.4031/MTSJ.48.5.10
https://doi.org/10.1098/rsta.2017.0165
https://doi.org/10.1098/rsta.2017.0165
https://doi.org/10.1139/f97-113
https://doi.org/10.1357/002224015816665589
https://doi.org/10.1357/002224015816665589
https://doi.org/10.1016/S0967-0645(01)00076-5
https://doi.org/10.1016/S0967-0645(01)00076-5
https://doi.org/10.1371/journal.pone.0055163
https://doi.org/10.1038/s41598-018-35901-7
https://doi.org/10.1016/j.csr.2014.05.011
https://doi.org/10.1016/j.csr.2014.05.011
https://doi.org/10.1002/ece3.4445
https://doi.org/10.1002/ece3.4445
https://doi.org/10.1357/002224000321511133
https://doi.org/10.1357/002224000321511133
https://www.R-project.org/
https://doi.org/10.1029/2008GC002332
https://doi.org/10.1126/science.283.5401.498
https://doi.org/10.5670/oceanog.2013.63
https://doi.org/10.5670/oceanog.2013.63
https://doi.org/10.1002/rob.20200
https://doi.org/10.1098/rsta.2017.0171
https://doi.org/10.1016/S0967-0637(98)00103-4
https://doi.org/10.1029/96GL03926
https://doi.org/10.1029/96JC01304
https://doi.org/10.1029/96JC01304
https://doi.org/10.4319/lo.2013.58.3.1035


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


